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for the 2s excitation, and 

*LMld=Z(L{L'2) 
L' 

xWL>M>t(isy(ipy-^$2m(i82)}LM (8) 

for the Id excitation. The (LfZ/2) are coefficients of 
fractional parentage, and the curly brackets denote 
antisymmetric vector coupled wave functions. The spin 
and isobaric spin quantum numbers are not written 
explicitly, but their incorporation into Eqs. (7) and (8) 
is always implied through the orbital angular momen
tum (in other words L symbolically stands for LSJT). 

I t is easy to demonstrate that spurious center-of-mass 
excitations are absent from the shell model wave func
tions in Eqs. (7) and (8). Following closely the analysis 
of Elliott and Skyrme,5 we may write either (7) or (8) 
in the form: 

^ M = ^ - 3 ( q . ) e x p [ - | L qf], (9) 

where PA-^{({i) is a polynomial of degree A— 3 in the 
coordinates q* and is antisymmetric under the simul
taneous interchange of orbital, spin, and isobaric 

I. INTRODUCTION 

IT has been shown by many authors that the nucleon-
nucleon interaction inside a nucleus is strongly 

attractive and is believed to have a hard core at small 
distances of order 0.4-0.5 F. One, therefore, cannot use 
a perturbation approach. Also, the actual wave func
tions of the individual nucleons are modified due to the 
strong internucleonic force. In calculations one should 
therefore use such modified wave functions in order to 
calculate various quantities. However, if one vises the 
perturbation theory one could also use another 
approach. Instead of using the modified form of the 
wave functions, one could use the unperturbed shell-

* Work supported in part by the U. S. Atomic Energy 
Commission. 

spin coordinates of any two nucleons. The identities 

Ziqi2=Zi(^-Q)2+AQ2 (10) 
and 

PA-z(qi-Q) = PA-z(qi) (11) 

must be established to complete the proof. Equation 
(10) is obvious. Equation (11) may be proved by 
expanding P^-_3(Q»—Q) into a power series in Q: 

PA-Z(qi-q) = PA-d(qi)+Q'PA-i(qi)+- •. (12) 

In order that Eq. (12) retain its homogeneity, one of the 
oscillator orbitals in P^_4(q;) must be demoted to a 
lower energy state. The <£>2oo(q-) and (pumiq.-) orbitals 
are now invariant under q» —> q ~ Q so we must demote 
a \p orbital. The Is shell is filled, however, with three 
Is nucleons and <£>ioo(q+); thus we "must have PA-^%) 
= 0 and in a like manner 

PA-n(qi)^0 if n>3. (13) 

The wave functions in Eqs. (7) and (8) are therefore 
free of spurious center-of-mass excitation, and appro
priate for shell-model calculations. 

model wave functions and the modified form of the 
two-body Hamiltonian. Very little is known about the 
exact nature of the nucleon-nucleon interaction. How
ever, some elegant theories1-3 which would provide 
better understanding of the nature of nuclear forces are 
now available. In the past few years, the Brueckner1 

many-body theory has been extensively used in de
ducing various quantities concerned with the 
Weizsacker mass formula. This theory is based upon 
the assumption of the two-particle correlations. A 
"reaction matrix" for a two-body potential is evaluated 

1 K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev. 
110, 431 (1958). 

2 H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) 
A238, 551 (1957). 

3 H . Feshbach and E. Lomon, Ann. Phys. (N. Y.) (to be 
published). 

P H Y S I C A L R E V I E W V O L U M E 1 3 6 , N U M B E R 5 B 7 D E C E M B E R 1 9 6 4 

Nuclear Spectroscopy With a Soft Core Potential* 

YESHWANT R. WAGHMARE 

Department of Physics, University of California, San Diego, La Jolla, California 

(Received 1 July 1964) 
it 

Nuclear spectroscopic calculations with a potential of the type v(r)=v<£(rn—cn/rn)~] exp (—r2/r0
2) are 

made for the core radius c=0.4 F and potential range f0=2.06 F. For simplicity of calculation, n = 2 is as
sumed. The calculations are made for / , p, and g-shell nuclei. It is shown that in the case of Zr90 the con
figuration dependence of the effective two-body interaction can be replaced by a singular potential. The 
configuration interaction in this nucleus is found to depress the ground state 0+ by ~ 0.4 MeV and raise the 
excited 0+ level by the same amount. For the / and p shells, the level splittings in Ti50, Ni58, and Be10 are 
analyzed. The calculations show that the triplet forces are small for these configurations. 
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in a self-consistent manner and an average binding 
energy is calculated in the case of nuclear matter. The 
calculations are then further extended4-6 with the local 
density approximation to the case of a finite nucleus. 
Furthermore, it is difficult to evaluate the reaction 
matrix exactly when the potential has an infinite 
repulsive core. The problem of hard core has been 
examined by several authors. It is shown by 
Moszkowski7 that a nonsingular velocity-dependent 
potential can well be introduced to replace the singu
larity of the hard core. It is also shown7 that the elastic 
scattering data alone even up to 300 MeV do not appear 
to be sufficient to specify the nucleon-nucleon potential 
accurately enough for purposes of many-body calcula
tions and that the use of binding energies of complex 
nuclei may prove helpful to specify this interaction 
precisely. 

In order to avoid the complexities due to the hard 
core, some approximation methods8,9 have also been 
suggested. It is nonetheless obvious that even an 
effective potential acting among the nucleons in a shell-
model nucleus might possess a strong repulsive char
acter. This has recently been shown by Pandya10 on the 
basis of purely simple shell-model calculations. Some 
calculations, with the so called "realistic potentials," 
have also been recently made. For these calculations, 
we refer to the paper of Dawson and Walecka11 who 
have used Gammel-Thaler potential in describing some 
of the features of light nuclei. Their prediction about 
the pi/2—pz/2 single-particle level difference as ~5-6 
MeV gives results12 which are in good agreement with 
the experiments. However, an interesting conclusion by 
Blatt13 regarding a 'new potential' (e.g., Hamada-
Johnston or Breit potential) and the scattering data is 
that as the agreement between the theory and the 
experiment improves, the deviations from the He3 

binding energy become more serious. In view of this, 
we make calculations in this paper for T= 1 states of 
various nuclei, still in the framework of the shell model, 
with a nucleon-nucleon potential having a soft core. 
In Sec. II, the method of calculating various matrix 
elements is presented. In Sees. I l l and IV, the method 
developed in Sec. II is applied for the /, p, and g-shell 
nuclei. In Sec. V, we discuss some of the aspects of the 

4 K. A. Brueckner and D. T. Goldman, Phys. Rev. 116, 424 
(1959). 

6 K. S. Masterson, Jr., and A. M. Lockett, Phys. Rev. 129, 
776 (1963). 

6 K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys. 
Rev. 121, 255 (1961). 

7 S. A. Moszkowski, Phys. Rev. 129, 1901 (1963). 
8 S. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11, 65 

(1960); H. S. Kohler, Ann. Phys. (N. Y.) 16, 375 (1961). 
9 H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev. 

129, 225 (1963). 
10 S. P. Pandya, Nucl. Phys. 43, 636 (1963). 
11 J. F. Dawson and J. D. Walecka, Ann. Phys. (N. Y.) 22, 133 

(1963). 
12 Y. R. Waghmare, Phys. Rev. 134, B1185 (1964). 
13 J. M. Blatt and L, M. Delves, Phys. Rev. Letters 12, 566 

(1964). 

potential we choose and in Sec. VI we make some 
overall comments regarding our approach. 

II. METHOD OF CALCULATIONS 

The method of evaluating the matrix elements of 
vatious shell-model states is essentially the same as that 
used earlier.12 We onty write the final expression for the 
matrix elements of a two-body interaction as14 

(jijtJMlHultfjWJM) 

fh si ji 

LsNXnl 
h S2 J2 

IL S J) 

f/l' S!* j ^ 

u s2> a 
L S J J 

where a and a! equal \ if the particles are equivalent, 
and equal l/v2 if the particles are inequivalent. The 
integrals Ini are 

Ini=(nI,S\ \Hn\ K ^ H Z fJi, (2) 

where fi are the coefficients corresponding to the relative 
orbital angular momentum / and 

•F 
Jo 

R?(r)v(r)dr, (3) 

where ^fi(r) = Ri(r)/r are the harmonic oscillator wave 
functions. The general form for the central two-body 
interaction can be written as 

#12= (AwW+AMM+ABB+AHH)V(r), (4) 

where Aw, AM, AB, and An are the coefficients corre
sponding to the various mixtures of the Wigner (W), 
Majorana (M), Bartlett (B), and Heisenberg (H) 
forces. Substituting the well-known expressions for W, 
M, B, and H in terms of the spin and isotopic spin 
states, one obtains 

H12
T= (a+bavG2)v

T(r) , (5) 

where a and b depend upon the coefficients in (4) as 
well as the isotopic spin T which is 0 for 7=odd and 1 
for J=even. These parameters a and b are to be evalu
ated from the experimental results. For T—l states, 
one can then define these coefficients in terms of the 
coefficients ATS defined by Barker15 as 

'An=W-M+H+B= (voj-^a+b), (6) 

A10 = W+M+H-B= (vo)"1^-^), (7) 

where vo is the strength of the potential v(rn). In 
nuclear spectroscopy calculations one generally assumes 
a Yukawa, Gaussian, or an exponential form. Such 

14 S. K. Shah and S. P. Pandya, Nucl. Phys. 38, 420 (1962). 
18 F. C. Barker, Phys, Rev. 122, 572 (1961), 
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calculations have been made by various authors. I t is 
recently shown by Warke and Waghmare16 that for the 
same nucleus, with a given effective range and strength, 
all these three potentials give essentially the same 
results. However, we are interested in a potential 
which will have a repulsive core at small distances. 
The potential that one generally uses in fitting the 
scattering data is of the form 

v(r) = -\-co , r<c 

= »attrW, r>Cy (8) 

where c is the core radius of order 0.4-0.5 F, and z>attrM 
is the attractive part of the nucleon-nucleon potential 
and is usually of the Yukawa shape v(r) = e~lir/ixr, with 
fjL—lA F . This potential along with the square-well 
potential is illustrated in Fig. 1. I t is, however, known 
that the calculations with potentials of the type 
described in (8) are difficult. In order to simplify the 
calculations, we prefer to choose an analytic form which 
would show the soft core behavior. Such a form can be 
taken to be 

/r2-c\ 
v(r)=*l \e-(rfro)\ (9) 

This potential is also illustrated in Fig. 1. Substituting 
expression (9) in (3) we obtain for the integrals Ii 

/ l = i ? ^ / » { l - [ 2 r A i ( 2 / + l ) ] } (10) 
with 

i / i=XY(l+X a) , \=ro/tfri, f = W , 

where ro is the range of the potential and ri is the range 

FIG. 1. Illustrative diagram of various potentials which are 
generally used. The dashed curve shows the characteristic shape 
of Yukawa, Gaussian, or exponential potential; the dotted curve 
shows the square well; and the solid curve represents the potential 
described by Eq. (6). 

16 C. S. Warke and Y. R. Waghmare, Phys. Rev. 135, B872 (1964). 

TABLE I. Table of integrals h (c=0.4, r0 = 2.01) 
defined by Eq. (10) for w = l to 4. 

h 
h 
h 
h 
h 
h 
h 
h 
h 

1 

0.053665 
0.015503 
0.003292 
0.000675 
0.000137 
0.000028 
0.000006 
0.000001 
0.000000 

2 

0.120498 
0.044913 
0.013999 
0.004267 
0.001292 
0.000389 
0.000118 
0.000035 
0.000011 

3 

0.202387 
0.094448 
0.038859 
0.015728 
0.006332 
0.002543 
0.001020 
0.000409 
0.000164 

4 

0.296986 
0.167349 
0.085560 
0.043184 
0.021704 
0.010887 
0.005456 
0.002733 
0.001368 

of the harmonic oscillator wave function as described 
previously. I t is clear that as f —> 0, Ii go over to the 
integrals for a pure Gaussian shape. The integrals Ini in 
(2) are tabulated for a Gaussian potential for n — 0 to 4, 
1=0 to 5 earlier.12 In Table I, we tabulate the integrals 
11 for various values of / and rji. 

III. ANALYSIS OF THE / AND p SHELLS 

We now apply the method developed in the previous 
section to the / , p, and g shells. We consider the energy 
levels of a nucleus with ground state configuration as 
C/7/2)2, e.g., Ti50. In order to restrict the number of 
parameters occurring in the theory, we choose the core 
radius to be 0.4 F as deduced by Brueckner and others. 
We also keep the range of the two-body potential ro to 
be fixed at 2.07 F from our earlier analysis.12 [ In this 
paper there is an error in defining ro. ro given in Table I I 
of this paper should be r0/V2. The value for ro= 1.47 F 
then comes close to the one calculated in Ref. 17.] We 
are then left with only two parameters, namely a and b> 
to be determined from the experimental information. 
The low-lying levels of Ti50 are shown in Fig. 2. These 
levels can arise from (/r/2)2 configuration. In order to 
evaluate the parameters a and b appearing in the 
Hamiltonian (5), we assume that the levels 0+ , 2+ , 4+ , 
and 6+ of Ti50 arise from a pure configuration (/V/2)2. As 
the parameters a and b appear in calculations in com
binations of (a+b) and (a—3b), we define two other 
parameters 

u=(a—3b) 
and 

v=(a+b) 

corresponding to the spin states s = 0 and s=l, respec
tively. We choose three levels 0+ , 2+ , and 6 + in order 
to evaluate the two parameters u and v. From these 
levels the parameters u and v are evaluated for various 
values of X. The value of X for Ti50 is —0.8. For this 
value of X, u^ - 5 5 MeV and v~-7 MeV (Table I I ) . 
In order to compare our results with those obtained by 
other authors, we fix the value of A10 at 0.6. The 
quantities flo and An then are —91.7 MeV and 0.08, 

17 V. K. Thankappan, Y. R. Wagmare, and S. P. Pandya, 
Progr. Theoret. Phys. (Kyoto) 26, 22 (1961). 
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FIG. 2. The low-lying experimental levels 
of Ti60, Be10, and Ni58. 

respectively. With these values of the parameters, the 
4+ level in Ti50 is placed at 2.40 MeV. The observed 
value is 2.76 MeV. 

For Ni58 the value of A is 0.77 and its ground-state 
configuration is (^3/2)2. We assume that the nature of 
the effective two-body interaction does not change 
much from Ti50 to Ni58. In that case we can take the 
values of the parameters u and v for X=0.77 from the 
analysis of Ti50. The values of these parameters in terms 
of vo and A n are given in Table II. The 2+—0+ splitting 
of the (pz/2)2 configuration in Ni58 for this set of param
eters is 1.80 MeV. The observed value is 1.45 MeV. It 
should be mentioned that in our calculations we did not 
include the configuration mixing from other excited 
levels in Ni58. However, preliminary analysis shows that 
both 0+ and 2+ are depressed by almost the same 
amount so that the 2+ —0+ splitting remains almost 
the same. 

The nucleus Be10 also has the ground state configura
tion (^3/2)2. Its energy is lfe less than the one in Ni58. 
In view of earlier indications12 that the effective inter
action does not change its character in the same shell, 
we once again take the values of u and v for ^0.98 for 

TABLE II. Table showing the comparison of the calculated 
and the observed results for various nuclei. 

Level 
Nucleus separation X 

Calcu
lated Observed —VQ 
value value in 

in MeV in MeV MeV An 

Ti60 4+-0+ 0.80 2.40 2.76 92 0.08 
Be10 2+-0+ 0.98 3.52 3.37 300 -0 .02 
Ni58 2+-0+ 0.77 1.80 1.45 175 0.11 

WAGHMARE 

Be10 from the analysis of Ti50 and Ni58. The values of Vo 
and An for A-^0.98 are given in Table II. Then the 
2+-0+ splitting in Be10 is obtained to be 3.52 MeV. 
The observed value is 3.37 MeV. It should be remarked 
that the pui~pm separation by Dawson and Walecka11 

is ^6.0 MeV. This means that the ground state 0+ as 
well as the excited state 2+ in Be10 are almost pure. It is 
interesting to note from Table II that the parameters 
A ii vary from 0.11 to —0.02 indicating that the triplet 
forces operate weakly in these nuclei. A similar situation 
is observed even in the case of heavier nuclei in the #9/2-
shell as we shall see in the following section. 

IV. ANALYSIS OF THE g SHELL 

The observed levels of Zr90 are shown in Fig. 3. The 
calculations on the energy levels of Zr90 have been made 
by some authors.18 The ground-state configuration of 
Zr90 is (pi/2)2 and the excited states arise when one or 
both the particles in pi/2 shell go to #9/2 shell. In this 
nucleus, we evaluate the parameters u and v for A=0.7 
from the observed positions of 2+, 4+, and 8+ levels. The 
values so obtained are 

u=-90 MeV, • 

v*= -0 .5 MeV. 

These values give for the triplet mixture A n ^ 0.003 
(Table II). With these values of the parameters, the 
separation of the 6+ level and the 8+ level is calculated 
to be 0.18 MeV. The observed value is 0.14 MeV. It is 
of interest to see that the triplet forces are very small. 

In order to estimate the effect of configuration 
mixing, we evaluate the position of the ground state 0+. 
This will be depressed to some extent from its unper-

E(MeV) 

4 h 

8 + 

4 + 

(4") 

2 + FIG. 3. Experimental energy-
levels of Zr90. 

0 + 

ih 

L_ 0 + 
Zr90 

18 See, e.g., the list in Ref. 17. 
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turbed position due to the interaction of the first 
excited 0 + level [arising from the (gd/2)2 configuration]. 
We assume the ^1/2—£9/2 separation to be 1.0 MeV. 
With the above parameters, the off-diagonal matrix 
element is estimated to be -^0.85 MeV. The separation 
of the two 0 + levels is calculated as 1.85 MeV while the 
observed value is 1.75 MeV (Table I I I ) . In fact, the 
configuration interaction depresses the ground state 
by ^ 0 . 4 MeV from its unperturbed position while it 
raises the excited 0 + level by the same amount. I t is 
obvious that the configuration mixing is important in 
this nucleus. 

We next calculate the positions of the 4~~ and 5~~ 
levels in Zr90. 5~ is observed to be at 2.31 MeV while 4~~ 
level is as yet not well established. The position of the 
4"" level is once again ~3.50 MeV. This value seems to 
be rather large as compared to the suspected position 
which is at ~2 .80 MeV. I t is thus of interest to establish 
experimentally the position of the 4~ level. Another 
point of interest is the following. 

I t was shown by Thankappan et alP that in order to 
explain the level structure of Zr90 nucleus on the basis 
of the simple shell-model calculations two sets of inter
action were needed. In other words, an interaction 
which explains the levels of (gg/2)2 configuration satis
factorily would not explain the ground state 0 + or the 
5~ levels. Their conclusion that the effective two-body 
interaction is configuration dependent is obvious. How
ever, from the present analysis, it seems that such a 
configuration dependence can be simulated by means 
of a soft core potential. I t may also be worthwhile to 
mention that the effect of using a velocity-dependent 
potential v(p,r) — \jPv(r)-{-v (r)p2~] would also be similar. 
We now make some remarks on the implications of the 
potential we have chosen for our analysis. 

V. THE POTENTIAL 

A potential which has a repulsive character at short 
distances has been suggested earlier by Goldhammer19 

for calculating the binding energies, quadrupole 
moments, etc. of O16, H2, H3, and He4 nuclei. However, 
it is recently shown by Ullah and Nesbet20 that such a 
potential, with the core part separated from the 
attractive part, does not give satisfactory results for 
the binding energy of O16. Another disadvantage of such 
a potential is that it has many more parameters and 
consequently is not convenient in the nuclear spectro
scopic calculations. On the other hand, a potential with 
a simple analytic form with the required physical 
behavior would be more suitable. A family of such 
potentials could be mentioned. 

F(f) = »o [ ( r n - c» ) / f ]F ( f i2 ) , (12) 

19 P. Goldhammer, Phys. Rev. 116, 676 (1959). 
20 N. Ullah and R. K. Nesbet, Phys. Rev. 134, B308 (1964). 

TABLE III. Observed and calculated energy levels of Zr90. 

/ 0+ 0+ 2+ 5- (4~) 4+ 6+ 8+ 

£expti (MeV) OS. 1.75 2.18 2.31 2.80 3.08" 3.45 3.59 
£caic(MeV) G.S. 1.85 2.28 2.30 3.50 3.18 3.51 3.69 

where V(r±2) may have any of the following shapes, 

Gaussian: V(r12) = e-(r/ro)2 

Yukawa: V (r12) = e-r/r°/r/r0 

Exponential: V(r12) = errlro. (13) 

A suitable potential could then be chosen by a proper 
choice of n and ro. There is also an advantage from the 
viewpoint of many-body calculations. By studying the 
potential in (12) for various values of the core radius a 
good understanding of the saturation density could be 
obtained. Due to the soft core, the many-body calcula
tions may not be difficult for the application of the 
perturbation treatment. 

VI. DISCUSSION AND CONCLUSION 

Most of the calculations made in nuclear spectro
scopic studies are based upon the pure attractive 
character of the two-nucleon potential. I t is however 
now known that this may not be so and that such a 
potential may have a repulsive part at short distances. 
From the calculations made in Sees. I l l and IV it is 
evident that a repulsive interaction with soft core does 
provide an understanding of the effective nucleon-
nucleon interaction. The method can also be applied to 
estimate the amount of admixtures in the wavefunctions 
due to the interactions of levels of same spin and parity 
but arising from different configurations. This we did 
in the case of Zr90 and observed that our potential 
partly replaces the configuration dependence observed 
earlier in Ref. 17. For Ni58, where the calculated value 
is slightly higher than the observed one, the configura
tion mixing effect of the second 2 + excited state may 
depress the first 2 + state to a reasonable agreement. 
However, it is clear from Table I I that triplet forces 
are comparatively small and the neglect of tensor forces 
would not introduce serious error. This conclusion 
about the tensor force was also independently arrived 
at by Goldhammer.18 I t is obvious that due to its 
intrinsic character, the potential described by Eqs. (12) 
and (13) would be valuable for further calculations in 
the study of many-body properties. 
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